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Abstract. An overview of the physics of intrinsic torque is presented, with

special emphasis on the phenomenology of intrinsic toroidal rotation in tokamaks,

its theoretical understanding, and the variety of momentum transport bifurcation

dynamics. Ohmic reversals and ECH-driven counter torque are discussed in some

detail. Symmetry breaking by LSN vs. USN asymmetry is related to the origin of

intrinsic torque at the separatrix.
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1. Introduction

This overview (OV) surveys recent developments in the theory and phenomenology of

intrinsic torque. By intrinsic torque we refer both to fluctuation-driven torque density,

which drives a local toroidal flow, and to the net fluctuation driven torque, which drives

global toroidal rotation. Not surprisingly, boundary torques and other effects play a

special role in the dynamics of net toroidal spin-up. Concern with intrinsic torque has

been driven by the surge of interest in intrinsic rotation - a rare piece of good news

for ITER - which is beneficial to macrostability (i.e. rotation near q = 2 can mitigate

or stabilize RWMs) and to confinement (i.e. toroidal shear flows contribute to E × B

shear suppression of turbulence and are of particular importance to ITBs and to states

of reduced profile stiffness). The concept of intrinsic torque emerged from the struggle

to understand asymmetries in co-counter torque scans[1] and to explain and predict

intrinsic rotation in H-mode plasmas, which is triggered at the L-H transition[2, 3].

This phenomenon, which was first described by the now famous ‘Rice scaling’[2, 4]

∆V ∼ ∆W/Ip, appears to be due to the build-up of a co-intrinsic torque in the H-mode

pedestals. Interestingly, a similar rotation increment is observed in I-mode plasmas[5, 6].

Here I-mode is the improved confinement regime which sometimes is encountered below

the L → H transition threshold. Pedestal structure, specifically the strong radial

inhomogeneity due to steep gradients and the boundary, effectively converts the heat

flux driven relaxation (∼ −Q∇T , the entropy production) to a fluctuation Reynolds

stress, which drives the pedestal intrinsic torque density. This theme of heat engine

↔ radial inhomogeneity + symmetry breaking → Reynolds stress → intrinsic torque

density is central to intrinsic rotation and will recur many times in this OV. Note that

the essence of this approach is to model the intrinsic torque as a heat engine[7, 8], which
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converts the thermodynamics force ∇rT , sustained by the heat flux Q, to ⟨Vϕ(r)⟩ via

some symmetry breaking.

It is important to state that the phenomenology of intrinsic torque is far broader

than the familiar Rice scaling paradigm. Indeed, intrinsic (azimuthal) torques have been

observed and investigated in basic plasma experiments[9]. More importantly, it is also

clearly dynamic and has led to the discovery of new types of transport bifurcation

phenomena. These types of bifurcations, which include ohmic reversals and ECH-

driven counter torques, have the distinguishing feature that a change in global rotation

profile structure occurs without any significant change in confinement. These should be

contrasted to the more familiar H-mode or ITB-driven intrinsic rotation[10], where both

rotation profiles and confinement (i.e. density and/or temperature profiles) undergo a

significant change. Several types of intrinsic torque bifurcation are thought to be related

to a possible change in the underlying microturbulence population, which results in a

change in direction of the mode group velocity and thus in the non-diffusive stress.

These will be discussed in depth here.

We emphasize at the outset that the scope of this OV is limited to intrinsic torque,

and that it is not a global review of the transport of toroidal momentum. This paper

is meant to complement to previous OVs[11, 12], which focused more on ‘momentum

pinch’ modeling. Also, since this paper is an OV, many technical details are omitted.

The reader is referred to the original literature for such matters of detail.

The remainder of this paper is organized as follows. Section II briefly summarizes

the driving phenomenology and basic ideas. Section III presents a general formulation

of the theory of intrinsic torque and residual stress, in terms of fluctuation entropy

dynamics. The heat engine analogy is developed. Section IV surveys the theory of

intrinsic torque from several perspectives. These are : a) a physical discussion of the
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most important stress contributions and symmetry breaking mechanisms, b) a brief

introduction to the gyrokinetic theory of intrinsic torque, c) a general formulation of

the theory of intrinsic torque, as derived from wave kinetics, which provides a useful

unified structure, highlights the role of waves in momentum transport, and conveniently

highlights the two classes of momentum transport bifurcations, d) the role of explicit,

boundary-related asymmetries on intrinsic torque. In particular, we address the effect of

USL vs LSN asymmetry on intrinsic torque. e) nonlocal effects and their possible role in

residual stress. We present a general argument as to why intrinsic torque and momentum

transport appear ‘more nonlocal’ than heat transport. Section V discusses how the

theory fares upon confrontation with the phenomenology. Section VI contains a critical

assessment and discussion of open questions. This includes a section on suggestions for

programmatic goals.

2. Basic Ideas and Driving Phenomenology

Historically, early theory and experiments suggested χϕ ∼ χi[13, 14]. However, the

discovery of intrinsic rotation and the results of perturbation experiments[15, 16]

strongly suggested that off-diagonal, non-diffusive components[17, 18] must enter the

momentum flux. Thus, we arrive at the basic form of the Πrϕ stress tensor, which is[17]

Πrϕ = ⟨n⟩⟨ṽrṽϕ⟩+ ⟨ṽrñ⟩⟨vϕ⟩+ ⟨ñṽrṽϕ⟩ (1)

We do not discuss convection (the 2nd term of the flux) here. Rather little is understood

about the ⟨ñṽrṽϕ⟩ triplet so we do not discuss it here, though there are indications that it

may contribute to intrinsic torque in strong turbulence regimes, such as at blob ejection

at the edge[19]. The Reynolds stress (i.e. 2nd order, nonconvective part) is given by:

⟨ṽrṽϕ⟩ = −χϕ
∂⟨vϕ⟩
∂r

+ V ⟨vϕ⟩+ΠR
rϕ (2)
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Here V is the momentum convection velocity or ‘momentum pinch’. The pinch velocity

here arises from toroidal effects, which break Galilean invariance. Thus, concerns of

Galilean invariance are not relevant. The physics of the pinch velocity V (r) has been

exhaustively reviewed elsewhere[11, 12] and will not be discussed here. A useful original

reference is by Yoon and Hahm[20]. This leaves ΠR
rϕ - the residual stress - which is

the major focus of this OV. The intrinsic torque density is then τ = −∂rΠR
rϕ. Most

generally, ΠR
rϕ is the piece of the Reynolds stress not directly proportional to ⟨vϕ⟩

or ∂⟨vϕ⟩/∂r. ΠR
rϕ is then proportional to ∇Pi,e, ∇Ti,e, or ∇n, and represents the

process whereby electron or ion free energy (i.e. stored in radial pressure gradients

- the thermodynamic forces) is converted to ⟨vϕ⟩ by the turbulence. ΠR
rϕ is necessary

to spin-up the plasma from rest to a state of stationary rotation, i.e. ∂t
∫ a

0
⟨pϕ⟩dr =

nmχϕ∂⟨vϕ⟩/∂r|a−nmΠR
rϕ(a)−nmV (a)⟨vϕ(a)⟩. Here the first term is from the diffusive

flux, the second is from the residual stress and the third is from the pinch. Note the

diffusive term is negative for co-rotation (∂⟨vϕ⟩/∂r < 0 for ⟨pϕ⟩ > 0) and positive for

counter-rotation (∂⟨vϕ⟩/∂r > 0 for ⟨pϕ⟩ < 0), and acts to oppose the net rotation.

Observe that a finite residual stress on the boundary (i.e. ΠR
rϕ(a) ̸= 0) is required for a

net acceleration of the plasma from rest (i.e. from a state with ⟨vϕ⟩ = ∂⟨vϕ⟩/∂r = 0).

Alternatively, boundary convection of (either sign!) with ⟨vϕ(a)⟩ ̸= 0 will drive spin-up.

The net sign of V ⟨vϕ(a)⟩ determines whether the pinch contribution will be co or counter.

The crucial importance of the boundary in intrinsic rotation dynamics is thus apparent.

For a no-slip boundary, taking external torque τext = 0 and considering a state of zero

momentum flux, we obtain the intrinsic velocity profile ⟨vϕ(r)⟩ = −
∫ a

0
dr′ΠR

rϕ(r
′)/χϕ(r

′),

which directly links intrinsic (i.e. torque free) rotation to ΠR
rϕ. Of course, the ⟨Vϕ⟩ profile

is determined by intrinsic torque density τ(r) = −∂rΠR
rϕ(r), as well as pinch, viscosity,

and any external torque present.
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Figure 1. ‘Cancellation’ experiment of Solomon, et al. from DIII-D[21]. A mix of 1

co and 2 counter beams yield a flat rotation profile with ⟨vϕ⟩ ∼= 0. This shows that the

intrinsic torque for these parameters is approximately that of 1 neutral beam, in the

co-current direction.

Regarding the phenomenology of intrinsic torque, an interesting selected subset we

discuss here is : a) H-mode edge transport barrier , b) ITB, c) OH-reversal, d) co-NBI

H-mode + ECH , e) LSN↔USN L-mode rotation. This discussion and that of Section

V are summarized in Table 1. Of course, the classic example of intrinsic torque and

intrinsic rotation is the H-mode ETB[3]. In the absence of external torque, a spin-up

is initiated at the L→H transition and builds inward[3]. The basic trend is described

by the Rice scaling ∆Vϕ(0) ∼ ∆W/Ip where W is energy content and ∆ refers to the

change across the L→I or L→H transition. The existence and location of the intrinsic

torque have been rather convincingly established by the ‘cancellation’ experiment by W.

Solomon[21]. The idea here was to exploit the asymmetry between co and counter NBI

H-modes due to the presence of a (hypothetical) ‘intrinsic torque’ τ . The result, shown

in Fig. 1, is striking: a net counter torque H-mode yields a rotation profile, which is

flat (and zero) within the error bars! The implication is clear: the on-axis counter-NBI

torque is exactly cancelled by a co-intrinsic pedestal torque! This result strongly argues
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for the viability of the intrinsic torque concept. It also suggests that intrinsic torque can

give the appearance of a non-local intrinsic torque phenomenon, in that the intrinsic

torque, situated in the pedestal, acts to flatten ∇⟨Vϕ⟩ in the core. To characterize the

pedestal intrinsic torque, data base studies from Alcator C-Mod[8] indicate that central

rotation in H-mode and I-mode tracks pedestal ∇Ti, i.e.Vϕ(0) ∼ ∇Ti,ped, suggesting that

the pedestal intrinsic torque is ∇Ti-driven.

Intrinsic rotation in ITBs[22, 23, 24, 25] has received far less attention than intrinsic

rotation in ETBs. This is due in part to the fact that ITBs are usually formed in plasmas

subject to external torque. However, since the interaction of external and intrinsic

torques is important in low torque scenarios planned for ITER, intrinsic rotation in

ITBs and ‘de-stiffened’ states should receive more attention. Here, a de-stiffened state

is one with a stronger response of the temperature gradient to heat flux increments than

that exhibited by a stiff state. De-stiffening can be achieved by enhanced E ×B shear,

for example. One recent experiment[10] obtained the scaling relation ∇Vϕ ∼ ∇Ti for

intrinsic rotation gradients in ITBs. This is reminiscent of the similar result for ETBs

and again suggests that the intrinsic rotation is temperature gradient driven, as in a

heat engine. To look beyond correlation to causality, that study investigated relative

hysteresis between ∇Vϕ and ∇Ti. Results indicated that hysteresis in ∇Vϕ was stronger

than in ∇Ti, possibly due to the low residual Prandtl number (i.e. Prresid ∼ χϕ/χi,

in the ITB. Here, χϕ and χi are the true, not effective, diffusivities) in the ITB. Since

hysteresis of a transport barrier is a consequence of the disparity between transport

in the normal and the barrier state, the fact that χi ≫ χϕ in the ITB implies that

hysteresis will be stronger in ∇vϕ than in ∇Ti. Recall χi ∼ χϕ in L-mode.

A particularly compelling case for the need to consider intrinsic torque physics is

the fascinating phenomenon of rotation reversals in OH or L-mode plasmas. Reversals



Intrinsic Torque and Momentum Transport Bifurcations in Toroidal Plasmas 8

P
h
en
om

en
on

S
ig
n
at
u
re

S
y
m
.
B
re
ak

in
g

K
ey

P
h
y
si
cs

Is
su
e

sp
in
-u
p
at

L
→

I
or

H
,

Π
r
es

an
d
∇
v ϕ

↑
Q
u
an

ti
ta
ti
ve
?

H
-m

o
d
e
an

d
R
ic
e
S
ca
li
n
g

P
ed
es
ta
l
⟨v

E
⟩′ ,
I
′

as
∇
p i
,
⟨v

E
⟩
↑

∇
T
i
or

∇
p i

?

I-
m
o
d
e
E
T
B

v ϕ
(0
)
∼

∇
T
i,
∇
p i

an
d
E
T
B

fo
rm

s.
H
ow

ac
h
ie
ve

C
an

ce
ll
at
io
n
ex
p
er
im

en
t.

gl
ob

al
ca
n
ce
ll
at
io
n
?

∇
v ϕ

st
ee
p
en
s

π
r
es

an
d
∇
v ϕ

↑
Q
u
an

ti
ta
ti
ve
?

IT
B

w
it
h
∇
T
i
in

IT
B

⟨v
E
⟩′ ,
I
′
in

IT
B

as
∇
p i
,
⟨v

E
⟩′
↑

R
el
at
iv
e
h
y
st
er
es
is
?

w
it
h
τ e

x
t
=

0
R
el
at
iv
e
h
y
st
er
es
is
of

R
ol
e
in

d
e-
st
iff
en
in
g?

∇
T
i,
∇
v ϕ

ob
se
rv
ed

In
ve
rs
io
n
of
v ϕ
(r
)

v ϕ
(r
)
in
ve
rt

at
ν ∗

∼
ν ∗

O
H

S
y
m
m
et
ry

B
re
ak
er
?

ar
ou

n
d
p
iv
ot

fo
r

O
p
en

Q
u
es
ti
on

w
it
h
ou

t
ob

se
rv
ab

le
ch
an

ge
E
x
te
n
d
ed

fl
ip

v
s.

O
H

In
ve
rs
io
n
s

ν ∗
>
ν ∗

sa
t.

H
y
st
er
es
is

I
′ ,
⟨v

E
⟩′ ,

..
.?

in
n
,
T

p
ro
fi
le
s.

L
o
ca
li
ze
d
fl
ip

in
n
,I
,B

-r
am

p
v g

r
fl
ip

at
T
E
M
↔

IT
G

+
sp
re
ad

in
g

tr
an

si
ti
on

.
→

π
r
es

fl
ip
s

In
te
rp
la
y
w
it
h
b
n
d
ry

E
C
H

in
d
u
ce
s
∆
∇
v ϕ
(0
)
<

0
in

D
en
si
ty

p
ro
fi
le

co
-N

B
I
H
-m

o
d
e

E
C
H

+
co
-N

B
I
→

O
p
en

Q
u
es
ti
on

N
B
I
H
-m

o
d
e
→

co
N
B
I
+

co
p
ea
k
in
g?

E
ff
ec
t?

+
E
C
H

ce
n
tr
al

fl
at
te
n
in
g

I
′ ,
⟨v

E
⟩′ ,

..
.?

in
tr
.
p
ed
.
+

cn
tr

E
C
H
.

E
x
te
n
d
ed

fl
ip

v
s.

of
v ϕ

v g
r
fl
ip
s
at

T
E
M
↔
IT

G
lo
ca
li
ze
d
fl
ip

tr
an

si
ti
on

+
sp
re
ad

in
g

L
S
N

↔
U
S
N

L
S
N

↔
U
S
N

S
O
L
fl
ow

d
ir
ec
ti
on

C
h
an

ge
in

co
m
p
et
it
io
n

B
ou

n
d
ar
y
fl
ow

L
-m

o
d
e
In
ve
rs
io
n
s

jo
g
→

S
O
L
fl
ow

or
E
d
d
y
ti
lt

b
et
w
ee
n
B

an
d
E

fi
el
d
sh
ea
r

p
en
et
ra
ti
on

→
∇
B

as
y
m
m
et
ry

re
ve
rs
al

→
co
re

d
u
e
co
m
b
in
at
io
n

in
U
S
L
v
s.

L
S
N
.
C
or
e

‘T
ai
l
+

D
og
’
P
ro
b
le
m

in
P
T

fl
ow

re
ve
rs
al

in
L
-m

o
d
e

m
ag
n
et
ic

an
d
el
ec
tr
ic

re
sp
on

d
s
to

b
n
d
ry

R
ol
e
of

S
O
L
fl
ow

s?

∇
B

as
y
m
.
in
P
T

fi
el
d
sh
ea
r

+
S
O
L
fl
ow

s

T
a
b
le

1
.
S
el
ec
te
d
P
h
en
o
m
en

ol
og

y
of

In
tr
in
si
c
T
or
q
u
e



Intrinsic Torque and Momentum Transport Bifurcations in Toroidal Plasmas 9

refer to events in which the global rotation profile spontaneously reverses direction. First

studied in detail in TCV[26] and C-Mod[27, 28, 29], reversals are spontaneous ‘flips’ in

the toroidal rotation profile from co to counter (in C-Mod) which occur as n increases

and exceeds nsat, the density at which confinement transitions from the LOC to SOC

regime. During the reversal, the rotation profile effectively pivots around a fixed point

inside q ≲ 3/2. Interestingly, up-down density ramps reveal back flips, but with some

hysteresis, i.e. the velocity vs. density plot is a closed loop enclosing finite area, not

a straight line, as shown in Fig.2. In some cases, a rotation ‘spike’ (i.e. a transient,

spatially localized bump in the toroidal rotation velocity profile) was observed near the

edge just after the reversal[28]. Also, experiments on TCV do indicate some differences

between reversals in limited and diverted discharges[30], suggesting that the effective

boundary conditions play a role in reversal dynamics. Spikes are particularly interesting,

as they may hold a clue to the global momentum balance and rotation profile dynamics.

This is because spikes may reveal the dynamics of momentum ejection events which

help understand how the total momentum balance of the core plasma is maintained.

Building on the long standing idea that the evolution from LOC to SOC regimes is due

to a transition from TEM transport to ITG transport excited by collisional coupling, a

speculation has arisen that inversions are a consequence of a change in the sign of ΠR
rϕ

as n > nsat or more generally ν∗ > ν∗crit[31, 32]. This change reflects the dependence

of ΠR
rϕ on vgr, the group velocity of the underlying microinstability. Alcator C-Mod has

pursued fluctuation studies, the results of which are consistent with the expected change

in mode populations, but are not conclusive. Further work is needed.

A somewhat related phenomenon, related to the effect of ECH on co-NBI H-mode

profiles, has been observed in JT-60U[33], AUG[34], DIII-D[35], KSTAR[36] and HL-

2A[37]. Results indicate that ECH of NBI-driven H-modes tends to flatten the otherwise
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Figure 2. Density ramp hysteresis loop for reversals on Alcator C-Mod[28].

peaked velocity profile, and reduce central rotation speeds (∆V/V ∼ −40%, in KSTAR),

while ∇Te steepens. Profile studies indicate ∇Vϕ ∼ ∇Te here, suggestive of a TEM

counter-torque in the core. Correlation of ∇vϕ and ∇n is also indicated[38]. The H-

mode pedestal rotation profile is unchanged by ECH, suggesting that the torque balance

here is : co-NBI + pedestal co-intrinsic v.s. core counter related to ECH. KSTAR profiles

with NBI and NBI+ECH are shown in Fig. 3. The data suggest a similar paradigm to

that for the OH inversion, namely a change in the direction of the core intrinsic torque

from co to counter, due to a flip in mode propagation direction from v∗i to v∗e, as ITG

gives way to TEM. Comparative gyrokinetic stability analysis of NBI+ECH and NBI H-

modes is, however, somewhat incomplete. This follows from the sensitivity of the results

to density profile structure near the pivot radius, and from uncertainty concerning the

spatial extent of the region where the mode population flips (according to purely linear

analysis). Fluctuation measurements are not yet available. See refs.[34, 36] for more

details.

The importance of the edge in intrinsic rotation physics should already be apparent.

A classic example of this is the LSN→USN jog experiments of LaBombard in C-Mod
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Figure 3. CES profiles from KSTAR co-NBI H-mode + ECH experiments[36]. Note

that injection of 400kW of ECH on axis into 1.2MW co-NBI plasmas tends to flatten

the ⟨vϕ⟩ profile, sharply peak the ⟨Te(r)⟩ profile and leave the ⟨Ti(r)⟩ profile almost

unchanged.

L-mode plasmas[39]. Here, ’jog’ refers to the process of swing the null point from lower

(LSN) to upper (USN) positions by controlled variation of the magnetic configuration.

These are often described as a “tail-wags-the-dog” phenomena, since changes from

LSN to USN reverses not only SOL flows, but also the direction of the core rotation.

Interestingly, the effect on core rotation vanishes in H-mode, suggesting that the tail is

‘cut-off’ by the sheared flow in the ETB. The dynamics of this fascinating phenomenon

are not understood. In particular, the issue of just how flow changes penetrate from

the SOL and boundary to the core remains open. Note that this issue may be related

to the long standing mystery concerning the ∇B-drift asymmetry in the L→H power

threshold[40]. It is important to note here that at least two types of boundary effects

are possible. One is due to SOL flows, produced by up-down SOL asymmetry (i.e. LSN

vs USN) and driven by in-out asymmetry of edge particle transport[39]. The other is

due to edge stresses, induced by eddy tilting[41].
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Car Intrinsic Rotation

Fuel Gas Heating ⇒ ∇T

Conversion Burn ∇T driven DW Turbulence

Work Cylinder/Cam Residual Stress

symmetry breaking → direction

Result Wheel Rotation Flow

Table 2. Table comparing two heat engines, a car and intrinsic rotation in tokamaks.

3. Towards a Fundamental Theory: Intrinsic Rotation as the Consequence

of a Heat Engine

Recent work [7, 8] has developed a quite general theory of intrinsic rotation as the output

of a heat engine, which exploits a heat flux-driven temperature differential (i.e. locally, a

temperature gradient∇T ) to drive turbulence in a bounded domain. Magnetic geometry

and boundary effects break symmetry and total momentum conservation, so that a net

toroidal flow develops. Two heat engines, a car and a tokamak, are compared in Table

2. The engine process effectively converts radial inhomogeneity into parallel flow via

symmetry-breaking induced non-diffusive component of the Reynolds stress ⟨ṽrṽ∥⟩, as

shown in Fig.4. The heat engine paradigm was developed to explain the formation of

geophysical flows[42] and the solar differential rotation[43] (Table 3). Both are prime

examples of flows produced by heat flux driven turbulence.

Here, we summarize the heat engine model, derived from the consideration of

fluctuation entropy balance. This discussion is necessarily short - readers are referred

to the original literature for details[7]. Fluctuation entropy is an especially convenient

framework within which to consider turbulent relaxation, since it is closely related to the
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Figure 4. Turbulent plasma and flow generation

Sun Tokamak

Heat Source fusion reaction in the core Heat deposition

Turbulence Source ∇T ∇T

Threshold Schwarzschild Criteria ITG

1

T

∣∣∣∣dTdz
∣∣∣∣ > (γ − 1)

1

ρ

∣∣∣∣dρdz
∣∣∣∣ R/LT > R/LT,c

Turbulence Convective Turbulence Drift-ITG Turbulence

Symmetry Breaking Rotation, β velocity shear, ⟨VE⟩′

Stratification Intensity gradient, I(x), ...

Resultant Flow Polar Differential Rotation Intrinsic Rotation

vϕ(θ) v∥(r)

Boundary Condition Momentum loss to Edge stresses, SOL flow

solar wind effects, neutral drag

Table 3. Comparison of differential rotation in the sun and intrinsic rotation in

tokamak
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phase space density fluctuation intensity. For ITG turbulence, the kinetic fluctuation

entropy density ⟨δf 2⟩/(2⟨f⟩) is:

∂t

⟨
δf 2

2⟨f⟩

⟩
+

1

r
∂r

(
r

⟨
Ṽr
δf 2

2⟨f⟩

⟩)
− ⟨δfC(δf)⟩

⟨f⟩

= −⟨ṽrδf⟩
⟨f⟩′

⟨f⟩
− |e|
mi

⟨Ẽ∥δf⟩
1

⟨f⟩
∂⟨f⟩
∂v∥

(3)

so the local fluctuation entropy balance is:

∂t

∫
dΓ

⟨δf 2⟩
2⟨f⟩

=

∫
d3x(P −D) (4)

Here,
∫
dΓ is an integral over phase space, P is production and D is dissipation.

Production P is given by:

P =

∫
d3v

(
−⟨ṽrδf⟩

⟨f⟩′

⟨f⟩
− |e|
mi

⟨Ẽ∥δf⟩
1

⟨f⟩
∂⟨f⟩
∂v∥

)
∼= nχi

(
∇T
T

)2

− nK

(
⟨VE⟩′

vthi

)2

+ nχϕ

(
⟨V∥⟩′

vthi

)2

− n
Πres

r∥
2

v2thiχϕ

(5)

The first term in P is thermal relaxation, the second term is due to E × B flow

generation, the third is turbulent viscous heating due to ⟨V∥⟩′ relaxation, and the

fourth is related to intrinsic rotation generation by Πres
r∥ . Note terms 1,3 are positive

definite, reflecting entropy production by relaxation, while terms 2, 4 are negative definite,

reflecting entropy destruction by flow generation. The zonal shear is controlled by

the balance of Reynolds force vs. drag, so the system has the familiar “predator-

prey” structure. This formulation suggests a natural definition of engine efficiency

e ≡
∫
d3xP d

flow/
∫
d3xP p

total, as the ratio of entropy destruction by toroidal flow

generation to total entropy production by relaxation. Detailed calculations[7] give

⟨V∥⟩′ ∼= −(ρ∗/2)(χi/χϕ)(Ls/cs)((∇T )/T )2v2thi. For no-slip boundary conditions, it

follows that: ⟨V∥⟩/vthi ∼= (ρ∗/2)(χi/χϕ)(Ls/LT )
√
Ti/Te and e ∼= ρ2∗(q

2/ŝ2)(R/LT )
2. The

sign and magnitude of the predicted ⟨V∥⟩ agree with C-Mod results[8]. Note that ⟨V∥⟩

scales with L−1
T , in accord with experiments, and taking 1/LT ∼ ∆Wp and Ls ∼ q ∼ B−1

θ
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Figure 5. Intrinsic torque vs ion temperature gradient as measured by simulations of

ITG turbulence[45].

recovers the basic trend of the Rice scaling, i.e. ∆vϕ ∼ ∆Wp/Ip. Similarly, the

⟨V∥⟩ ∼ ∇T/Bθ scaling of Ida, et al. [44] is also recovered. Note also the explicit, direct

ρ∗ scaling originates from the underlying turbulence model and symmetry breaking

mechanism. Zonal shear intensity at saturation is ⟨V ′
E⟩2 = (χi/K)v2thi/L

2
T . Here K

is quadratic in fluctuation amplitude and originates from the perpendicular Reynolds

stress. The heat engine efficiency is e ∼ M2
i , where Mi is the toroidal Mach number,

so e ∼ .01 → .1 for Mi ∼ .1 → .3. e scales according to e ∼ ρ2∗(q
2/ŝ2)R2/L2

T , and

e ∼ ⟨(k∥/kθ)2⟩. Note that apart from the ρ∗ dependence, the scaling behavior of e is

similar to the Rice scaling. Of course, for CTEM turbulence, ∇n and ∇Te replace ∇Ti

as the relevant thermodynamic forces, which will enter the scaling. Fig.5 shows a plot

of intrinsic torque vs ∇Ti for ITG turbulence[45], while Fig.6 shows the corresponding

intrinsic torque vs. ∇Te and ∇n for CTEM turbulence[46]. Note that in all cases, the

residual stress scales directly with the driving gradient (i.e. the relevant thermodynamic

force). Of course the ρ∗ scaling is a concern for possible extrapolations to ITER, though

ρ∗ scaling is not manifested in empirical studies of intrinsic rotation scaling[4].

The main intrinsic limitation of this approach is its local formulation and simplified
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Figure 6. Intrinsic torque vs electron pressure (electron temperature and density)

gradient as measured by simulations of CTEM turbulence[46].

boundary condition. In particular, fluctuation entropy transport (i.e. turbulence

avalanching and spreading) and dynamics of heat flux relaxation[47] can significantly

modify the dependences. Research in these issues is ongoing. Non-locality and intrinsic

torque are discussed in section 4.5.

4. Theory of Intrinsic Torque

This section surveys the physics of the most relevant symmetry breaking mechanisms.

This survey is necessarily limited − other mechanisms do exist. We focus on the most

important physical properties of the mechanisms of interest. The reader concerned

with detailed calculations should consult the primary literature. The discussion is

summarized in Table 4.

The net residual stress ΠR
rϕ is given by:

ΠR
rϕ = nmi

[
⟨ ˜vE,rṽ∥⟩R + ⟨ c

B
Ẽr

c

B
Ẽ∥⟩ −

Bθ

BT

⟨ ˜vE,rṽθ⟩
]

(6)

Each term represents a specific process and is determined by a specific spectrally

weighted correlator of two wavenumber components. This correlator contains the essence

of the symmetry breaking physics, much the same way the turbulence helicity contains
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Table 4. Physics of Symmetry Breaking Mechanisms

Relevant Stress Spatial Key Physics Macro

and Mechanism Structure Implication

⟨ṽrṽ∥⟩, ⟨vE⟩′ k∥ from spectrum Centroid shift πres ∼ ⟨vE⟩′.
(Electric field shear) shift (config.) induces mean ⟨k∥⟩ Intrinsic torque

or eddy tilt from parallel peaked at barriers,

(ballooning) acoustic wave steep gradients

asymmetry πres can flip

with mode change

⟨ṽrṽ∥⟩, I ′ k∥ from spectra Spectral dispersion πres ∼ I ′. relevant

(Intensity gradient) dispersion due from intensity to barriers but also

(I ≡ intensity) I ′ gradient. Linked for more general

to ⊥ Reyn. stress, inhomogeneity.

also. Can change with

mode change.

Ultimately tied to

temp. profile curv.

Stress from ⟨krk∥|ϕk|2⟩ Guiding center As yet unclear.

polarization stress due stress from Merits further

acceleration radial + parallel acceleration due study. Linked to

⟨Ẽ∥∇2
⊥ϕ̃⟩ propagation, polarization charge mode radial group

(r, ∥) tilting ⟨krk∥⟩ ̸= 0 needed velocity vgr and

can flip direction

Stress from (r, θ) tilting, J×B torque ∼ universal

∂r⟨ṽrṽ⊥⟩ as for ZF originating from mechanism, closely

→ ⟨Jr⟩ → Bθ⟨Jr⟩ Same physics polarization flux related to ZF,

→ toroidal for ZF I ′ ̸= 0, ⟨krkθ⟩ ̸= 0 tied to I ′ and Ik
torque needed structure. Flips

with vgr. Merits

more study.

the essence of reflectional symmetry breaking, which is crucial to the mean field theory of

the turbulent magnetic dynamo[48]. Indeed, symmetry breaking is well to be central to

large scale flow generation in turbulent neutral fluids[49]. The first term is the residual

part of the parallel Reynolds stress, due to radial transport of parallel velocity, which

is determined by the spectral correlator ⟨kθk∥⟩. Here the bracket refers to a spectral

average, i.e. ⟨kθk∥⟩ =
∑

k kθk∥|ϕ̃k|2/
∑

k |ϕ̃k|2 . The second term is the polarization
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stress, which actually originates from parallel acceleration of guiding centers by the

gyrokinetic polarization charge[50]. The key correlator here is ⟨krk∥⟩. The third term is

due to the toroidal projection of perpendicular forces, or, equivalently, the ⟨J⟩radial×Bθ

force induced by a radial flux of polarization charge. The relevant correlator is ⟨kθkr⟩,

familiar from the perpendicular Reynolds stress which drives zonal flow[51], etc.

The residual part of the parallel Reynolds stress, determined by the ⟨kθk∥⟩

correlator, is effectively set by the spatial structure of the spectrum |ϕ̃k(r)|2 , since radial

structure couples to parallel variation via k∥ = k∥(r), and since the sum over modes

implies a spatial integration. Hence, the ⟨kθk∥⟩ correlator is sensitive to asymmetries .

The first of these is due to spatial spectral shifts as shown in Fig. 7. Sheared flows (i.e.

⟨VE⟩′) tend to shift modes off resonant surfaces[52, 53], producing a skewed intensity

profile, which in turn gives a finite spectrally averaged value of ⟨k∥⟩. This produces

an imbalance in acoustic wave populations with ±k∥, and so gives a finite ⟨kθk∥⟩. A

spectral intensity shift is thus the signature of k∥ symmetry breaking by E ×B shear.

In ballooning space[32], E×B shear produces an eddy shift and tilt. Note that the shift

is necessarily proportional to ⟨VE⟩′, and cannot be so large that the underlying shear

turns the underlying instability off. The correspondence between the configuration and

the ballooning space manifestations of shear flow induced symmetry breaking is shown

in Fig.8. Note the connection between mean k∥ (i.e. ⟨k∥⟩) and net eddy tilt. Clearly

the real space and ballooning space approaches are equivalent.

A second, equally important mechanism for symmetry breaking in ⟨kθk∥⟩ is due

to spatial spectral dispersion, with finite intensity gradient I ′[54, 55]. This mechanism

does not require a spectral shift. Rather, the requisite asymmetry is produced by the

spatial profile of intensity. The origin of this effect can be seen from

⟨kθk∥|ϕ̃k|2⟩ ≃ ⟨k2y
(r − r0)

Ls

{|ϕ̃k|2 + (r − r0)
∂

∂r
| ˜ϕk(r0)|2 + · · ·}⟩
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Figure 7. Symmetry breaking by ⟨VE⟩′-induced spectral shift[53]. Finite ⟨VE⟩′ renders

the spectral centroid non-zero, and so yields ⟨k∥⟩.

Figure 8. Shifted spectrum in real space and net eddy tilt in ballooning space. Note

a Fourier transform directly relates the ‘tilted’ spectrum in ballooning space to the

shifted spectrum in configuration space.

≈ ⟨k2y
(r − r0)

2

Ls

∂

∂r
|ϕ̃k|2⟩ (7)

Figure 9 gives an instructive heuristic sketch related to this mechanism. Note that

intensity gradients will surely be steep at the boundary between regions with different

confinement properties (for example, at the ‘corners’, which bound transport barriers

where profile curvature is large). Thus, strong intensity gradients will occur near regions
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with large changes in ⟨VE⟩′. However, one can expect an intensity gradient in any region

of significant temperature profile curvature. This may easily be seen by considering

the condition of constant total heat flux, taken as diffusive for simplicity. Then, for

Q = −(χT + χneo)∂r⟨T ⟩,

Q′ ∼= 0 (8)

requires

1

χT

∂rχT
∼= − 1

∂r⟨T ⟩
∂2r ⟨T ⟩ −

1

χT

∂χneo

∂r
(9)

Here χT is the turbulent heat diffusivity. For simplicity, we also assume χT > χneo.

Thus, noting ∂rχT/χT ∼ ∂rI/I, we find

∂rI

I
∼= −∂

2
r ⟨T ⟩
∂r⟨T ⟩

, (10)

i.e. temperature profile curvature is seen to be closely related to the fluctuation

intensity gradient. Notice that it is profile curvature, rather than profile shear, which

ultimately determines the residual stress and intrinsic torque nominally produced by

fluctuation intensity gradients. Also note that both intensity gradient and electric

field shear mechanisms ultimately depend heavily on profile curvature, the latter via

{1/(en)}∂2r ⟨pi⟩, from radial force balance. We see that the intensity gradient mechanism

is, in some sense, more general than the E ×B shear mechanism.

Given the complexity of symmetry breaking physics, it is natural to seek to

test the theory via numerical simulation. With the possible exception of full f , flux

driven studies, gyrokinetic simulations have somewhat limited capacity to investigate

intrinsic rotation phenomena. Boundary conditions - both for flow and for heat

- remain especially thorny issues. Simulations can, however, investigate symmetry

breaking mechanisms. One study of flux driven ITG turbulence[45] compared the

correlation between residual stress and intrinsic torque, with parallel symmetry breaking
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Figure 9. Symmetry breaking by I ′-induced spectral dispersion[54, 55].

Figure 10. Comparison of symmetry breaking mechanisms related to E × B shear

⟨V ⟩′ and intensity gradient I ′[45]. The levels of correlation with Πrϕ are comparable.

mechanisms due to ⟨VE⟩′ and I ′ (intensity gradient). Fig. 10 shows the correlations of

residual stress and intrinsic torque with the candidate mechanisms. The degrees of

correlation are quite comparable, with the intensity gradient mechanism exhibiting the

same level of correlation as the usually invoked ⟨VE⟩′. Interestingly, correlations with

intrinsic torque are stronger than with residual stress.

Another contribution to the residual stress is the second term in Eq. 6, which

actually originates from parallel acceleration of guiding centers by GK polarization

charge ∼ ⟨Ẽ∥∇2
⊥ϕ̃⟩[50]. Ignoring other co-existing symmetry breaking mechanisms,
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we can re-write this acceleration effect as the divergence of a stress ΠR
rϕ ∼ ⟨Ẽ∥∂rϕ̃⟩.

The key correlator for this stress is ⟨k∥kr⟩ . Interestingly, this correlator is typically

non-zero for any out-going wave i.e. with the structure k∥ ∼ kθx/Ls, while kr = −µkx

so ⟨k∥kr⟩ ∼ ⟨(kθµk)x
2/Ls⟩ ̸= 0. There is no need to invoke additional “symmetry

breaking”. In this sense, the polarization stress is a universal contribution to ΠR, which

is likely to be present in all confinement and transport regimes. We comment that ΠR
pol

merits more attention than it has received to date.

A fourth mechanism, corresponding to the third term on the RHS of Eq. 6 follows

from the toroidal projection of the perpendicular Reynolds stress [56], ⟨ṽrṽ⊥⟩. Since the

stress ⟨ṽrṽ⊥⟩ is fundamentally rooted in wave propagation and necessarily depends upon

radial group velocity vgr[51], we refer to this as the wave residual stress ΠR
w. The way

by which ΠR
w drives toroidal rotation may be thought of either as a result of a non-zero

divergence of a stress (∼ (Bθ/BT )⟨ṽrṽ⊥⟩), or as a toroidal torque ⟨Jr⟩Bθ/c . The two

approaches are precisely equivalent. Here ⟨Jr⟩ is the radial current produced by the

radial flux of polarization charge( ⟨Jr⟩ ∼ Bθ⟨ṽrρ2s∇2
⊥ϕ̃⟩/B0 ∼ (Bθ/B0)∂r⟨ṽrṽθ⟩, by the

Taylor identity[57, 58]). Now, the Reynolds stress is more conveniently calculated by

using wave kinetics and modulation theory. The result, which follows from a standard

calculation[51], is:

ΠR
wave =

∑
k

{−Dw
∂

∂r
(kθ⟨N⟩)−

k2θρ
2
sτck

(1 + k2⊥ρ
2
s)

2
kr

∂

∂kr
⟨Ω⟩⟨VE⟩′}, (11)

where Dw = v2grτck and ⟨Ω⟩ is the wave enstrophy density, proportional to the wave

action density. Note that the first term is effectively an intensity gradient contribution

and is determined by the radial profile of wave poloidal momentum density itself,

∼ kθ⟨N(k,x)⟩. τck is the wave-flow correlation time. The first term corresponds to

spatial diffusion of wave momentum density, due to the random walk (in the space)

of interacting wave packets. Dw is the spatial diffusion coefficient for this walk. The
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second term is familiar from zonal flow theory[51], and represents growth by zonal flow

amplification. Eq. 11 states that both radial position and radial wave-number gradients

of the spectral density contribute to driving the mean stress and intrinsic flow. Physically

speaking, the second term describes how shear-induced eddy tilting produces a stress,

while the first describes how a gradient in wave momentum density can drive a flow.

Interestingly, this mechanism is quite robust, and appears stronger than conventionally

invoked effects derived from ⟨ṽrṽ∥⟩, since usually |(Bθ/B0)⟨ṽrṽ⊥⟩| > |⟨ṽrṽ∥⟩|. Note also

that the wave stress does not require any special symmetry breaking effect, apart from

the existence of a non-zero spectral gradient in either x or k. Thus, the force induced by

the toroidal projection of the ⟨ṽrṽ⊥⟩ intrinsic torque stress surely merits more attention

as a drive for intrinsic rotation.

We emphasize here that while this list includes the most important and most

frequently invoked symmetry breaking mechanisms, there are many others. The

constraints on this rather short OV paper preclude an exhaustive discussion. The reader

is referred to other OV papers and to the original literature for additional details.

4.1. Gyrokinetic Formulation of Intrinsic Torque

The approach of the previous section was intuitive and heuristic. There, we sought to

motivate and present the key physics of the mechanisms which underpin intrinsic torque.

In this complementary section, we present a gyrokinetic formulation of intrinsic torque.

The approach is systematic and deductive, and the aim is to indicate how and where

the effects discussed in section 4.1 originate in the gyrokinetic equation.

For an electrostatic axisymmetric equilibrium, the expression for the evolution of

toroidal canonical momentum pφ ≡ msRbφv∥ − qsψ/c may be written as [59]

∂

∂t

⟨
pφB

∗
∥Fs

⟩
+

1

V ′
∂

∂ψ
V ′

⟨
pφB

∗
∥FsẊ · ∇ψ

⟩
+

∂

∂v∥

⟨
pφB

∗
∥FsV̇∥

⟩
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= −
⟨
qsB

∗
∥δFs

∂δϕ

∂φ

⟩
, (12)

where we have taken the limit of cold ions, so that finite Larmor radius effects may

be neglected. Here B∗ = B + (mic/e)∇ × (v∥b). This limit was taken for reasons

of simplicity and may be easily relaxed (see Refs. [50, 60, 61] for treatments of finite

Larmor radius terms). Integrating Eq. (12) over velocity space, and summing over

particle species, yields

∂

∂t

⟨∑
s

∫
d3vpφFs

⟩
+

1

V ′
∂

∂ψ
V ′

⟨∑
s

∫
d3vpφFsẊ

⟩

= −

⟨∑
s

qs

∫
d3vδFs

∂δϕ

∂φ

⟩
, (13)

where the velocity space volume element is given by d3v ≡ 2πdµdv∥B
∗
∥ . Equation

(13) indicates that toroidal canonical momentum is conserved up to the breaking of

axisymmetry by the fluctuating electrostatic field. This expression may be transformed

into an expression for the angular momentum Lφ ≡ msRbφv∥ by multiplying the particle

conservation equation by qsψ/c and summing the result with Eq. (13), yielding

∂

∂t

⟨∑
s

∫
d3vLφFs

⟩
+

1

V ′
∂

∂ψ
V ′ ⟨Πφ · ∇ψ⟩

=
⟨
RδqpolδEφ

⟩
+R

⟨Jr⟩Bθ

c
. (14)

Here we have defined the polarization charge and radial current by

δqpol =
∑
s

qs

∫
d3vδFs, Jr =

∑
s

qs

∫
d3vFsẊ · êr,

the flux of angular momentum is given by

Πφ ≡
∑
s

∫
d3vLφFsẊ. (15)

and we have defined the radial unit vector by êr ≡ ∇ψ/ |∇ψ| where |∇ψ| = BθR.

Equation (14) suggests that the plasma may be accelerated by the radial flux of toroidal

momentum, the application of a J × B torque, or through the toroidal acceleration of

the plasma by the fluctuating electric field.
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The J × B torque appearing on the right hand side of Eq. (14) can be further

constrained by considering the gyrokinetic Poisson equation. Namely, taking the time

derivative of the flux surface averaged linearized gyrokinetic Poisson equation, yields⟨
∇⊥ ·

(
ϵ⊥
∂

∂t
∇⊥ϕ

)⟩
= −4π

⟨∑
s

qs

∫
d3v

∂Fs

∂t

⟩

= 4π

⟨
∇⊥ ·

∑
s

qs

∫
d3vFsẊ

⟩
, (16)

where ϵ⊥ ≡ c2/v2A and we have utilized the conservative form of the gyrokinetic Vlasov

equation. After performing an integration over the radial direction, the mean radial

current may be shown to be constrained by the temporal variation of the mean radial

electric field, i.e.

− ϵ⊥
4π

∂

∂t
⟨Er⟩ = ⟨Jr⟩ . (17)

The J ×B torque on the right hand side of Eq. (14) may then be rewritten as

⟨Jr⟩Bθ

c
= − ϵ⊥

4π

∂

∂t

⟨Er⟩Bθ

c
, (18)

which may be recognized as the rate of change of the mean toroidal field momentum.

Similarly, utilizing the gyrokinetic Poisson equation, the toroidal acceleration term may

be rewritten as

⟨
RδqpolδEφ

⟩
=

1

V ′
∂

∂ψ
V ′

⟨
n0mi

c2

B2
∇⊥δϕ · ∇ψ∂δϕ

∂φ

⟩
, (19)

where we have exploited the axisymmetry of the magnetic equilibrium. Hence, from

Eqs. (17), (19) and (14), the evolution of the total toroidal momentum is described by

∂

∂t

(⟨
Lmech
φ

⟩
+
⟨
Lfield

φ

⟩)
+

1

V ′
∂

∂ψ
V ′ [⟨Πφ · ∇ψ⟩+ ⟨Πpol · ∇ψ⟩] = 0, (20)

where we have defined the flux

Πpol ≡ −n0mi
c2

B2
∇⊥δϕ

∂δϕ

∂φ
. (21)
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Here the mechanical and field momenta are defined by

Lmech
φ ≡

∑
s

∫
d3vLφFs, Lfield

φ ≡ R
ϵ⊥
4π

⟨Er⟩Bθ

c
. (22)

For practical purposes, it is often convenient to decompose the polarization stress

into perpendicular and parallel components, i.e.

⟨Πpol · êr⟩ = −n0mi

⟨
R
Bθ

B
δuEB

y δuEB
r

⟩
− n0mi

⟨
R
Bφ

B

c2

B2
δErδE∥

⟩
.

Here the first contribution can be recognized as the toroidal projection of the

perpendicular Reynolds stress, whereas the second contribution represents the toroidal

projection of a parallel stress associated with the acceleration of gyrokinetic polarization

charge. The second contribution corresponds to the parallel Reynolds stress ⟨ṽrṽ∥⟩

discussed in 4.1, while the second corresponds to (Bθ/BT )⟨ṽrṽ⊥⟩, also discussed there.

4.2. Alternative Formulation by Wave Kinetics

In this section, we survey an alternative formulation of the physics of residual stress[31].

The formulation here is based on the same idea as the energy conservation balance in

basic quasi-linear theory. There, an appealing picture of an energy balance between

resonant particles and waves emerges[62, 63]. In that spirit, here we calculate the net

momentum flux and residual stress by a decomposition into resonant ion momentum flux

and wave momentum flux. The wave momentum flux is most conveniently calculated

by a type of Chapman-Enskog expansion of the wave kinetic response, using the wave

kinetic equation. The utility of this approach is that it is rather systematic, yields

a unified structure within which to examine trade-offs and competition, and gives

an alternative perspective to the approach presented in section 4.1. In particular, it

elucidates the important links between wave propagation, momentum transport, and

intrinsic torque.



Intrinsic Torque and Momentum Transport Bifurcations in Toroidal Plasmas 27

Here we briefly summarize the calculation and discuss the physics of the principal

results. We limit this discussion to wave momentum (i.e. equivalent to non-resonant

particle momentum), as most ions which support drift-ITG turbulence are non-resonant.

Resonant particle momentum transport is discussed in detail in ref.[31]. The radial

flux of parallel wave momentum (which corresponds to the radial flux of non-resonant

particle parallel momentum) is given directly by
∑

k k∥vgrN(k). This quantity is most

expeditiously calculated using a linear response approximation for the wave population

(i.e. action) density N(k, x), in the spirit of a Chapman-Enskog expansion (see [31]).

This yields the response of the gas of waves to thermodynamic forces. Omitting details,

the result is:

ΠR
r∥ ≃

∫
dkk∥{−τc,kv2gr

∂

∂r
⟨N⟩+ τc,kvgrkθ⟨VE⟩′

∂

∂kr
⟨N⟩} (23)

The first term on the RHS accounts for spatial transport of parallel wave momentum

by scattering wave packets, which leads to wave momentum density diffusion. It is

effectively an intensity gradient effect. As ∂⟨N⟩/∂r > 0 (i.e. since fluctuation intensity

increases with radius), the effect generates an inward flux of positive wave momentum

(k∥ > 0) and/or an outward flux of negative wave momentum (k∥ < 0). Any intensity

gradient then necessarily must produce a finite flux and residual stress. This effect is

particularly strong at the edge, where intensity gradients are steep. The second term

accounts for refraction induced wave quanta imbalance. This is evidently important in

regions of strong ⟨VE⟩′, such as for steep ∇P , relevant to barriers. It is important to

notice that dependence on the propagation direction of the underlying mode enters via

the vgr factor, which can flip sign when ITG→ TEM. The physics of ΠR
r∥ is schematically

shown in Fig. 11. The ⟨VE⟩′ dependence follows from a refraction induced change in

wave population (and momentum) density due to shearing.

An interesting observation concerning the wave radiation stress given in Eq. 23 is
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Figure 11. Drives of wave residual stress[31]. Part a) shows the effect of spectral

inhomogeneity (intensity gradient) and part b) shows the effect of shearing and shear-

induced tilt.

that it clearly can support multiple types of transport bifurcations, implying multiple

states of toroidal momentum transport. In particular, a glance at the 2nd term suggests

that ΠR
r∥ associated with this contribution (∼ vgr⟨VE⟩′) can change either by: a) a

change in ⟨VE⟩′ at constant vgr or b) a change in vgr at constant ⟨VE⟩′ The former

corresponds to the L→H spin-up, or ITB formation, where ⟨VE⟩′ increases dramatically.

Note that changes in fluctuation intensity are largely irrelevant, since for intrinsic

rotation, ⟨vϕ⟩′ ∼ Πresit/χϕ, so fluctuation amplitude approximately cancels out. Of

course, some residual turbulence in the barrier is required to sustain Πres. The second

type of momentum transport bifurcation corresponds to reversals, where a change in

sign of vgr, and thus ΠR, can result from a v∗e ↔ v∗i flip (i.e. TEM↔ ITG). Note that in

the former case, the momentum transport bifurcation is closely linked to a confinement

bifurcation (as ⟨VE⟩′ increases), as in the formation of ETBs and ITBs. In the latter case,

the residual stress and intrinsic rotation profile can exhibit dramatic changes without any

particular change in confinement, ∇T , ∇n etc! Of course, other scenarios are possible,

involving trade-offs between radiative diffusion and wave refraction effects. This issue
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will be discussed further in Section 5.

The issue of symmetry breaking can be profitably illuminated by an approach via

radiation hydrodynamics for drift waves, as described here[64, 65]. In this framework,

⟨k∥⟩ =
∫
dkk∥N/

∫
dkN - i.e. mean k∥ emerges from a k∥ moment equation of wave

kinetics, so the evolution of ⟨k∥⟩ is described by a moment equation for ⟨p∥⟩ ∼
∫
dkk∥N .

Wave parallel momentum density calculations give the result:

⟨k∥⟩ ≃ τwck{−
1

r

∂

∂r
[r⟨Πw

r∥⟩]−
∫
dk(

∂k∥
∂kr

)kθ⟨VE⟩′⟨N⟩+ 2

∫
dkk∥γk⟨N⟩}(24)

Thus, we see that the net wave momentum density at a given position is determined by

the competition between nonlinear decay (i.e. spectral transfer, or scrambling, with

correlation time τwck) and the following terms: a.) local inflow or outflow of wave

momentum density by transport, given by −∂r⟨Πw
r,∥⟩. b.) enhancement of ⟨k∥⟩ via

synergy between electric field shear (⟨VE⟩′) and magnetic shear (∂k∥/∂kr ̸= 0!). This is

the same process as the E×B shear induced mode shift or eddy tilting process discussed

in section 4.1. In eikonal space it may be understood as a process of k∥ wind-up due to

⟨VE⟩′ shear-induced eddy tilting. Since ∂k∥/∂kr ∼ kθ, the overall effect is even in kθ and

∼ k2θ . c.) k∥ asymmetry in growth rate γ∥ - a rare occurance.

4.3. Boundary Asymmetries

This section deals with the effect of boundary asymmetries on intrinsic torque. Here

we focus on LSN (lower single null) vs. USN (upper single null) asymmetry and its

effect on residual stress. This issue is closely related to the well-known LSN and USN

asymmetry in the H-mode power threshold.

One of the most persistent puzzles in L→H transition phenomenology is why the

power threshold is usually lower for LSN configurations (with∇B drift into the X-point)

than for USN configurations (with ∇B-drift away from the X-point). Here, we briefly
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Figure 12. (a) Radial profile of E × B velocity for unfavorable (light gray) and

favorable (dark grey) configurations. (b) Associated electric shear profile.[41]

summarize recent progress on a model which links this asymmetry to the interplay of

magnetic shear and E×B shear induced eddy tilting, and its affect on Reynolds stress

generated E×B flows[41]. Simply put, both magnetic and electric field shear act to tilt

eddys. Tilting eddys induce a perpendicular Reynolds stress, by rendering ṽr,E ṽ⊥,E ̸= 0.

Thus, the local radial wave number is given by, kr(θ) = kr(θ0) + [(θ − θ0)ŝ − V ′
Eτc]kθ,

where the first term is due to magnetic shear tilting (which varies with angle θ) and

the second term is due to E×B shear tilting, which grows in time. Hereafter, we take

τ = τc, the turbulent correlation time and thus the eddy life time, and θ0 = 0. Given
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the structure of kr(θ), the total non-diffusive (i.e. ’residual’) Reynolds stress is

⟨ṽrṽθ⟩ = ⟨ṽr2(0)⟩F 2(θ)[−θŝ+ V ′
Eτc] (25)

F 2(θ) referes to the potential fluctuation intensity as a function of poloidal angle θ.

Now the point here is readily apparent from observing that ⟨θF 2(θ)⟩θ will tend to

vanish unless there is an imbalance between contributions to the flux surface average

from θ > 0 and θ < 0 – i.e. an up-down asymmetry, as for LSN vs USN ! The remaining

question is to determine when the magnetic shear induced stress adds to or subtracts from

the E×B shear induced stress and the related flow production. To do that, the electric

field shear must be computed self-consistently, by solving the poloidal momentum

balance equation: ∂t⟨vθ⟩ + ∂r⟨ṽrṽθ⟩ = −γCX⟨vθ⟩ where ⟨ṽrṽθ⟩ = −χθ∂r⟨vθ⟩ + Πŝ + ΠV ′
E

so

∂tvθ + ∂r(Πŝ +ΠV ′
E
) = −(γCX − ∂rχθ∂r)[VE + V∗i] (26)

Here we have used radial force balance while neglecting toroidal flow, and have accounted

for turbulent viscosity (χθ) and frictional damping (γCX), and retained both magnetic

shear (Πŝ) and electric field shear (ΠV ′
E
) driven residual stresses. Of course, ⟨VE⟩′ in

the latter also must satisfy radial force balance. Equation (26) is solved while imposing

the boundary conditions Er = −3∂rTe (i.e. determined by SOL physics) at the LCFS

and VE = −V∗i in the core. Assuming Gyro-Bohm turbulence and using standard

parameters, we calculate VE/cs and V ′
E, as shown in Fig. (12). It is readily apparent

that favorable (i.e. LSN) configurations (where Πŝ and Πv′E
add) give a larger and

stronger edge electric field shear layer than do unfavorable (i.e. USN) configurations

(where Πŝ and Πv′E
subtract). The effect is significant – maximum shears are at least

twice as strong for LSN than for USN. The corresponding Reynolds force is obtained,

too. We also note that the effect is not poloidally symmetric, when variation of intensity
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in θ is considered.

The effect on toroidal rotation follows directly from the relation between ΠR
rϕ

and perpendicular Reynolds stress discussed above, i.e. ΠR
rϕ ≃ −(Bθ/BT )⟨ṽrṽ⊥⟩.

The results above immediately suggest that ∂r⟨vϕ⟩|a = −(Bθ/BT )⟨ṽrṽ⊥⟩/χϕ, so edge

rotation gradients differ substantially for LSN and USN. In particular, in the favorable,

LSN configuration, ∂⟨vϕ⟩/∂r|a > 0, while for the unfavorable, USN configuration,

∂⟨vϕ⟩/∂r|a < 0. These trends are observed in DIII-D[66] and Tore Supra[67] L-mode.

Their implications for central rotation are unclear, as core momentum transport physics

also affects central rotation. The relation of these results to the well known C-Mod

experiments of LaBombard, et al.[39] is also unclear, since SOL flow effects appears

to be significant in that case. In that vein, some have hypothesized that turbulent

viscosity, resulting from parallel shear flow instability[68] of strong SOL flows, may

scatter SOL flow momentum through the LCFS and into the core, in such a way as

to affect core rotation. In this scenario, poloidally in-out asymmetric particle flux,

driven by drift wave turbulence, produces a SOL flow via the symmetry breaking due to

magnetic configuration (i.e. LSN vs USN). Transport of this SOL flow momentum into

the core plasma is then hypothesized to spin-up core rotation. Of course, the formation

of an ETB, as by an L → H transition, will block any influx of SOL momentum into

the core, as indeed observed in experiment. This interesting SOL-flow-based scenario,

motivated by observed LSN→USN jog induced flow reversals in C-Mod L-mode plasmas,

is as yet unsupported by even semi-quantitative theoretical work. The details of how

that ‘tail wags the dog’ mechanism actually works, and how efficient it is, remain

exceedingly murky. Note there is a clear distinction between the eddy tilting and SOL

flow mechanism. In the eddy tilting scheme, turbulence exerts a stress at the separatrix,

the sign of which is partially, but not exclusively, determined by the magnetic geometry.
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In the SOL flow scheme, turbulence is thought to transport momentum from outside the

separatrix into the core. Differentiating between these two scenarios remains a challenge

for experiment.

4.4. Non-local Effects and Their Role in Intrinsic Torque

Though controversy still persists, there is mounting evidence that turbulent transport

in tokamaks is ‘non-local’, i.e. not well described by a linear, local flux-gradient

relation[69]. Specific processes which may be at work include avalanching and turbulence

spreading. Thus, non-locality surely must also enter the story of momentum transport

and intrinsic torque. However, the evident importance of wave propagation dynamics in

the residual stress, along with the rather strong effects of boundary stresses, SOL flows

and pedestal intrinsic torque suggest that momentum may, in some sense, be ‘more

non-local’ than heat transport. One striking demonstration of this is the cancellation

experiment of Solomon[21], in which centrally deposited counter-NBI and pedestal co-

intrinsic torque combine to yield an essentially flat rotation profile, with ⟨vϕ⟩ = 0, from

ρ = 0 to ρ = 1. This result suggests a potentially non-local character of momentum

transport. In this section, we discuss the theory and simulation of non-locality in

momentum transport.

It is interesting and instructive to first observe that the presence of an intrinsic

torque can give the naive impression that momentum transport is ‘non-local’, even

within the formulation of a purely local theory! To see this, consider the rather relevant

example of the Solomon cancellation experiment - i.e. net counter NBI torque triggering

an L→ H transition which produces a co-intrinsic torque in the pedestal. Ignoring the

momentum pinch for simplicity, stationary momentum balance for this case gives:

∂rΠ = Text(r) (27)
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Π = −χϕ∂r⟨vϕ⟩+Πres (28)

So

−∂rχϕ∂r⟨vϕ⟩ = Text(r) + Tintr(r) (29)

where Text is the external torque (assumed to be peaked on axis) and Tintr is the intrinsic

torque (∼ −∂rΠres), and situated in the H-mode pedestal[21]). For simplicity then, we

take

Tintr = aTIδ(r − rped) (30)

where rped is the location of the top of the pedestal and TI gives the strength of the

intrinsic torque. Here TI > 0 (co-torque) while Text < 0 (counter-NBI). Then, Eq.29

gives:

∂r⟨vϕ⟩ = − 1

χϕ

[∫ r

0

dr′Text(r
′) + aTIΘ(rped − r)

]
= − 1

χϕ

[∫ r

0

dr′Text(r
′) + aTI

]
(31)

Note that Text and TI oppose one another. Interestingly, Eq.31 suggests that the core

velocity gradient ∂r⟨vϕ⟩ appears to consist of a usual local piece ∼
∫ r

0
dr′Text(r

′), driven

by the NBI momentum deposited within the flux surface at r, plus a piece originating

from the pedestal intrinsic torque, which self-organizes at the edge. The latter has the

appearance of a ‘non-local’, or ‘tail-wags-the-dog’ effect, since it originates at the edge

yet it dramatically affects the core velocity profile. Indeed, in the Solomon cancellation

experiment, TI cancels Text, leaving ∂r⟨vϕ⟩ ∼= 0. Thus, we see that localized localized

intrinsic torques, such as those due to ETBs and ITBs, can give the appearance of a

‘non-local’ effect in the momentum balance, in spite of the fact that the basic transport

model from which they originate is fundamentally local! This simple example illustrates

the subtlety of what may appear as nonlocality in momentum transport.
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Figure 13. Conventional scenario of finite core ∇Ti(r) set by heat flux from

deposition. ∇Ti steepens at ETB where χi(r) is suppressed.
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Figure 14. In contrast, core ∇vϕ is set by sum of outgoing NBI torque induced flux

and incoming intrinsic torque induced flux. These cancel, leaving ∂r⟨vϕ⟩ ∼= 0 in the

core. The incoming momentum flux from the ETB intrinsic torque thus gives the

appearance of a non-locality, in that an edge effect ‘back reacts’ on the core - a ‘tail

which wags the dog’. In the Solomon cancelation experiment, the ‘tail’ and the ‘dog’

in fact cancel, leaving a flat profile.

One well known agent of genuine ‘non-locality’ is avalanching, as in a sandpile

self-organized criticality. Avalanches can produce transient mesoscale and large scale

transport events, which connect large regions of the plasma. An avalanche is a burst
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of correlated transport kicks by interaction between adjacent modes extending over

a range of scales ∆c < l < Lmacro. This range falls in the range of mesoscales.

Heat flux avalanches have been observed in many simulations[45, 69, 70] and some

experiments[71]. An interesting question, then, is how momentum avalanches behave

in a heat flux driven state without momentum input (i.e. which corresponds to a state

of purely intrinsic rotation). To address this, we report on results of full f , gyrokinetic

simulations which compare the probability distribution function of the heat flux and

momentum flux[45]. Results are shown in Figs.15 and 16. Fig.15 shows that the pdf

of the heat flux is very well correlated with the pdf of the negative of the momentum

flux, −Π, i.e. pdf(Q) ∼ pdf(−Π). This suggests that while avalanches transport heat

outward, they tend to transport momentum inward. In contrast, Fig.16, from the same

study but from a different simulation, indicates outward avalanching in both heat and

momentum. In that case, pdf(Π) ∼ pdf(Q), including the non-Gaussian tail on the

pdf. A possible explanation of the origin of the differences between the figures is that

the profiles for Fig.15 are chosen so that ∇Ti is maximal near the edge, due to the

imposition of an artificial edge cooling. In some sense, the simulation resembled an RI-

mode plasma[72, 73], the edge of which is strongly cooled by radiation due to impurity

injection. Thus, the heat engine picture (which links Πres to ∇Ti) tells us that it is

not surprising that intrinsic rotation is driven from the edge inward. In case of Fig.16,

∇Ti evolves so there are turbulence and avalanches throughout the domain, and ∇Ti is

largest in the core. In that case, an in→out development is to be expected, and is indeed

realized. The contrast between these two cases nicely illustrates the impact of the global

configuration, boundary conditions, etc. on the development of the local structure of

intrinsic rotation. Such sensitivity to global structure can appear as ‘non-locality’.

We briefly comment here on what might qualify as an unambiguous signature of



Intrinsic Torque and Momentum Transport Bifurcations in Toroidal Plasmas 37

Figure 15. Pdf for heat flux and momentum flux with ∇Ti maximal at the edge.

Here, Pdf(Q)∼Pdf(−Π), indicating close correlation by opposite sign of the fluxes.
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Figure 16. Pdf for heat flux and momentum flux with ∇Ti freely evolving, becoming

maximal at the core. Here, Pdf(Q)∼Pdf(Π), indicating close correlation and like

direction of the fluxes.

nonlocality in intrinsic torque. Gyrokinetic simulations[70] have noted the existence

of a non-local relation between the turbulent heat flux Qi and ∇Ti, given by Q(x) =

−
∫
dx′κ(x, x′)∇Ti(x′). Here, κ(x, x′) is a non-local kernel κ ∼= S0/{(x−x′)2+∆2}, and

LTi
> ∆ > ∆c. Note that

∫
dx′x′2κ(x − x′) diverges, suggesting that the avalanches

produce Levy flights as the origin of nonlocality. For ∇vϕ ̸= 0, one would straight-

forwardly expect that the diagonal part of the momentum flux would exhibit a similar
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relation between Πdiag and ∇vϕ, as a generalization of χϕ ∼ χi. More interesting,

however, is the possibility that Πres(x) ∼
∫
dx′α(x, x′)∇Ti(x′), suggesting a non-local

relation between residual stress and ∇Ti! Here, α(x, x′) is an interaction kernel, related,

but not necessarily identical to, κ(x, x′). Such a relation is the logical non-local extension

of the Πres ∼ ∇Ti proportionality discussed at length above, in the context of the engine

model. We remark that it would be quite interesting to investigate simulation data for

evidence of such a dependency.

Turbulence spreading-induced non-locality can also occur from radiation transport

of wave momentum by drift waves. This idea builds upon the relation between wave

propagation and momentum transport, discussed above. A straightforward calculation,

which extends the Chapman-Enskog analysis discussed in [31], yields the mean flux of

parallel wave momentum:

⟨Πw
r∥⟩ = −Dw

∂

∂r
⟨pw∥ ⟩+ Vw⟨pw∥ ⟩ (32)

where Dw =
∫
dk(vgr(k)

2/νk)⟨N⟩/
∫
dk⟨N⟩ is the drift wave quanta diffusion coefficient

and Vw = −
∫
dk[∂/∂kr(vgr(k)/νk)kθ⟨vE⟩′⟨N⟩/

∫
dk⟨N⟩] is the quanta convection

velocity, which is driven by ⟨vE⟩′, and νk = (τwc,k)
−1 is the wave packet decorrelation

rate. For turbulence levels near the mixing length level, Dw ∼ DGB = ρ2scs/a. Thus,

we see that non-resonant ion momentum is transported by diffusive wave scattering

and shearing-induced convection. Of course, conservation of total momentum requires

an adjustment in mean flow momentum in response to that of the wave momentum,

thus leading to observable flow profile evolution. This shows that the close connection

between non-resonant particle momentum and wave momentum allows us to write an

explicit, if somewhat theoretical, expression for the diffusive and convective mean wave

momentum flux, which is given in Eq.(32). This supports the heuristic arguments for

the role of turbulence spreading in intrinsic rotation dynamics, and strengthens the case
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that calculations of intrinsic torque must address non-locality. In particular, this simple

example tells us a.) to expect a non-trivial ‘convective’ contribution to the residual stress

due to wave transport, and b.) that a more fundamentally sound approach to modeling

intrinsic rotation and momentum transport must evolve the wave kinetic distribution

(with spreading effects!) along with the profiles.

5. Theory Meets the Phenomenology: A Critical Appraisal

In this section, we discuss how the theory of intrinsic torque fares upon confrontation

with the phenomenology. The aim here is to assess what is understood, where

understanding is developing, and what remains poorly understood. We do not pretend

to present a complete discussion, but rather a survey of key points. A full review of the

many interesting results on intrinsic rotation, and our theoretical understanding thereof,

is far beyond the scope of this OV paper. Here we focus on issues which are critical

to the theory discussed here. This discussion is organized into sections on: a) general

aspects of intrinsic torque, b) intrinsic rotation in ETB, c) intrinsic torque in ITB, d)

OH reversals, e) intrinsic torque effects in co-NBI H-mode with ECH, f) LSN↔USN

asymmetry and L-mode flow reversals. The important topic of intrinsic rotation in

LHCD is beyond the scope of this paper and left for future reviews.

5.1. General Aspects

From section 3 and 4, we saw that the essential elements of the theory are the engine

paradigm and the basic aspects of symmetry breaking mechanisms. Regarding the

engine paradigm, Fig. 5 illustrates the linear proportionality of intrinsic torque (as

measured from GK simulation of ITG turbulence) to R/LT [45, 74]. Similar results

have been obtained from simulations of CTEM[46], i.e. τ ∼ 1/LTe , 1/Ln, as shown
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Figure 17. Audit of residual stress contributions from gKPSP simulations[55]. Both

E × B shear and intensity gradient contributions are substantial and comparable.

This figure shows there is no clearly and universally dominant symmetry breaking

mechanism which controls the residual stress.

in Fig.6. Several physical experiments support the heat engine concept that Vϕ tracks

∇T [8, 10, 44]. The dynamic response has not yet been addressed, i.e. the question of “is

there a time delay between the responses of∇T and perturbation experiments?” remains

unanswered. Interestingly, there is some hint from simulations that such a time delay

is, in fact, present[45]. Regarding symmetry breaking, Fig. 17 shows the decomposition

of residual stress obtained from GK simulation[55] into pieces proportional to ⟨VE⟩′, I ′,

etc. Not surprisingly, under standard conditions there is no clearly dominant piece, and

all seem to contribute. Most dedicated simulation studies confirm the basic ideas on

symmetry breaking and its role in residual stress, which were discussed in section 4.

Apart from indirect inference from profiles, physical experiments have not been able to

address the theory of symmetry breaking, since to do so requires careful measurement of

the off-diagonal components of the Reynolds stress tensor. It is also worth noting that

simulations have recovered the build-up of net macroscopic intrinsic rotation, as shown

in Fig. 18 from [45]. Likewise, numerical cancellation experiments, after Solomon, have

been performed successfully.
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Figure 18. Profile evolution in GYSELA simulation[45]. Note that a flow with net

momentum builds up from noise during the simulations

Figure 19. The relation between toroidal velocity and pedestal width obtained from

the solution of a reduced model[75]. The figure shows that the velocity at the top of

the pedestal increases with the width of the pedestal.

5.2. H-mode ETB and Pedestal Intrinsic Torque

The most studied case of intrinsic torque is that located in the H-mode pedestal. This is

then a natural phenomenon to attack by modelling. Prime goals are to recover the Rice

scaling trend, and understand their underpinning. A reduced model based on transport

bifurcations in the presence of ⟨VE⟩′-triggered intrinsic torque was developed[75]. Fig. 19

illustrates aspects of the edge rotation profile obtained from this simple model by
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showing the (approximately) linear proportionality of velocity at the pedestal to the

pedestal width. Qualitatively good results are obtained - i.e. the intrinsic rotation

pedestal builds up as part of the process of ETB formation. The rotation pedestal

clearly builds from the boundary inward. Results also indicate that the pedestal width

effectively determines the height of the rotation pedestal, i.e. ∆Vϕ ∼ (w/a)VThi, and

∆W ∼ w (increment in stored energy scales with pedestal width). Thus, the dynamics

are consistent with the Rice scaling. If we use a frequently invoked semi-empirical

expression for the pedestal width w, i.e. w ∼
√
βpa[76], the Rice scaling follows directly.

Attempts to recover the I−1
p trend of the Rice scaling from simulation studies of q or

ŝ dependence have also been successful, but are not entirely in agreement with one

another[46, 55]. All results suggest that the Rice scaling is a macroscopic realization of

the engine paradigm and the fundamental ∇Vϕ ∼ ∇T scaling trend. We also comment

that the central velocity evolution (in terms of which the Rice scaling is stated) may

be affected by additional physics, such as a momentum pinch. Finally, we note that

the proposed mechanism of orbit loss - which seems to survive countless silver stakes

driven through its heart - has also been suggested as a driver of ETB-related intrinsic

rotation[78]. For orbit loss, ∆vϕ ∼ ∆T , rather than ∆∇vϕ ∼ ∆∇T , is predicted to be

the key macroscopic scaling correlation. We remark here that a careful study of the

available edge rotation data should be undertaken to compare these two predictions.

Published results from Alcator C-Mod are not consistent with the orbit loss paradigm[8].

Finally, there is a clear need for relevant fluctuation studies - including direct Reynolds

stress measurements - in regions beyond the base of the pedestal.
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5.3. Intrinsic Rotation in ITBs

Rather little is known about intrinsic rotation in ITBs and the role of intrinsic torque

in ITB dynamics, apart from experiments from C-Mod[22, 23, 24, 25] and LHD[10].

Here, we discuss a few aspect of the results from recent TRB simulations of reversed

shear ITB dynamics[79]. These simulations are flux driven gyrofluid (GF) studies of

ITG turbulence[80, 81, 82, 83] which omit the effect of non-resonant modes. These

simulations may not be directly relevant to the ITBs in Alcator C-Mod, where ∇n

steepening occurs and turbulence is likely CTEM[25]. Modulo the difference in magnetic

configurations of a tokamak and stellarator, they are, however, relevant to LHD.

Simulation results indicate that ITBs form, and intrinsic rotation develops, inside

of the barrier location. This is shown in Fig. 20. The Reynolds stress can be shown

to be decomposed into an outward diagonal diffusive piece plus an inward residual,

as shown in Fig. 21. The central velocity scales with ∇Ti, until ITB suppression of

turbulence to levels where χTurb
i ≤ χneo

i is achieved, as shown in Fig. 22. At that point,

neoclassical Prandtl number dependence (i.e. dependence upon the ratio of neoclassical

χϕ and neoclassical χi - namely χneo
ϕ /χneo

i ) appears in ⟨V∥(0)⟩ scaling trends, on account

of the difference between the residual transport of momentum and heat. This Prandtl

number dependence is also related to the strength of relative hysteresis between ∇Vϕ

and ∇Ti, which is observed in experiments. The strength of the relative hysteresis of

∇Vϕ with ∇Ti decreases with neoclassical Prandtl number, as shown in Fig. 23, and seen

in experiment[10]. All told, results from experiment and this rather basic simulation

track expectations based on simple ideas about ITBs, and on our experience (in both

theory and experiment) with ETBs. Considerable further study of ITBs controlled

by CTEMs is required. There, interaction of particle and momentum transport will
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Figure 20. Reversed shear ITB profiles from TRB gyrofluid simulations of ITG

turbulence with Boltzmann electrons and no-slip boundary conditions[79]. The ITB

foot is located at r = 0.6. Strong intrinsic rotation builds within the ITB. Clearly,

∆∇vϕ ∼ ∆∇Ti, i.e. ∇vϕ steepens with increasing ∇Ti.

be especially important. Interaction and possible competition between core and edge

intrinsic torque are particularly important issues. We remark that intrinsic torque in

ITBs rather clearly merits more study, both as a means to test the theory and models,

and as a central element in a scenario for “de-stiffened low torque core confinement”[77].

Since this section has stressed the similarity between ETB and ITB intrinsic torque,

we remark on a few possible differences. One major distinction is the possible role of

manifestly boundary-related effects in the ETB core. These include upper and lower

null point (USN vs LSN) asymmetry, scrape-off layer flows, and orbit loss. Another

possible distinction is the ITG vs CTEM competition, which is more likely in the core.

Thus, care must be taken to avoid over generalization from ETB to ITB.
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Figure 21. Decomposition of Reynolds stress in the same ITB simulations as

Fig.20[79]. An inward, non-diffusive residual stress is evident.

Figure 22. ⟨v∥(0)⟩ vs −∇Ti for ITB intrinsic rotation plotted for different neoclassical

Prandtl numbers[79]. Note that a linear phase at lower −∇Ti (akin to Rice scaling),

is followed by saturation when the ITB quenches turbulence, and a subsequent slight

increase due to relative hysteresis.
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Figure 23. Change in ∇V∥, plotted vs. neoclassical Prandtl number[79]. The scaling

is suggestive of relative hysteresis.

5.4. OH Reversals

The interesting subject of OH reversals was discussed in some detail in section 2.

Two central questions must be addressed by experiment in order for a meaningful

confrontation with theory to occur. To test the key idea that the OH inversion is a

consequence of a change in the sign of Πres due to a mode population change or ‘flip’

from TEM (∼ v∗e) to ITG (∼ v∗i) as confinement saturates, experiments must:

(i) find some indication, likely from macroscopics, of the mechanism of symmetry

breaking in this regime. It is far from clear that the conventionally invoked ⟨VE⟩′,

or more generally, “profile shearing”[32] is the dominant mechanism in this regime.

Intensity gradient and the wave stress are viable alternative mechanisms.

(ii) perform coordinated fluctuation measurements which unambiguously show a

temporally coincident reversal in the sign of the centroid of the frequency spectrum

in the region which controls the inversion. Note that this amounts to revisiting
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earlier measurements[84] on fluctuation spectral changes as n crosses nsat, in concert

with rotation profile studies.

Neither of these central questions has been substantively addressed by experiment.

Though some hints of changes in fluctuation spectra have been observed during C-

Mod reversals, the evidence for a mode shift is far from conclusive[27, 28, 29]. Theory

has addressed the second question but has largely ignored the first, while sticking to

the conventional wisdom concerning symmetry breaking. Furthermore, theory has

not substantively addressed the important and interesting phenomenon of density

hysteresis[26, 27], the role of boundary conditions (results from TCV[26, 30] indicate a

change in direction between limited and diverted OH plasmas, other factors being equal)

or the origin and meaning of boundary rotation spikes[28]. An interesting suggestion

concerning the impact of non-locality effects has recently appeared[69, 85], but needs

further development.

A speculative digression on the physics of OH reversals seems appropriate here.

First, the OH-reversal is a rather clear-cut example of the second class of momentum

transport bifurcation discussed in section 4.3, in which ΠR
r,∥ flips sign but confinement

does not change. This idea and observation go hand-in-hand with the hypothesized

‘mode flip’ scenario. However, the observed hysteresis in density tells us clearly that

some asymmetry between transient states of increasing and decreasing density is present.

A hypothesis for the origin of such asymmetry is that it is a consequence of the inter-

penetration of two competing gases of drift or ITG mode quasiparticles, representative

of TEM and ITG turbulence respectively. In this picture, the plasma consists of TEM

regions, ITG regions, and ‘mixed states’, where both populations coexists. Thus, as

n increases, one might expect the ITG population to advance or ‘spread’ into the

TEM population and eventually squeeze it out. For decreasing n, one might expect the
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Figure 24. gkPSP simulation of toroidal flow profile before and after change from

TEM→ITG state.[86] Note that the profiles are suggestive of an inversion.

reverse, but with a different front speed - hence the hysteresis. This idea presents a real

challenge to both simulation and experiment - i.e. for the former to realize a macroscopic

inversion and for the latter to achieve what amounts to ‘fluctuation propagation direction

imaging’. In this regard, nonlinear global delta-f gyrokinetic particle simluations with

the gkPSP code[86] have have indeed noted ‘inverted’ rotation profiles when comparing

otherwise similar ITG and TEM dominated states[86]. This is shown in Fig.24. These

results are the first nontrivial hint from nonlinear gyrokinetic simulation that the ‘mode

flip’ scenario is viable. Much further work is required, however. It does seem fair to say,

though, that a purely quasilinear approach which ignores mixed states is too simple. At

this stage, the bottom line is that while the theory and experiment of OH reversals have

independently accomplished a significant amount, they are only beginning to connect.
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5.5. ECH + co-NBI H-mode and ECH H-mode

Understanding rotation in H-mode discharges with combined co-NBI and ECH, and

in H-mode discharges heated by ECH only, is a high priority issue for ITER. Thus,

it is puzzling as to why a greater effort to understand the structure of the resulting

rotation profiles has not been made. Several experiments[34, 35, 36, 87] tell us that

for co-NBI with modest levels of ECH, the effective torque balance is central co-NBI

torque plus pedestal co-intrinsic torque vs. central counter-torque associated with ECH.

However, we note that this trend is not universal since counter intrinsic rotation with

ECH + co NBI H-mode was observed in JT-60U[33]. Exceptions do exist, however. For

pure ECH cases, the trend is a core counter torque and rotation (consistent with the

ECH+NBI findings)[35, 87], and a pedestal co-torque and co-rotation. A connection

region or transition layer, where vϕ passes through zero, links the counter rotating core

and the co-rotating edge pedestal regions. The implications of what would happen

if the vϕ = 0 point were located near the q = 2 radius of ITER are unpleasant to

contemplate. At the microscopic level, the central question is the physics origin of the

ECH-related intrinsic counter torque. At the macroscopic level, an interesting question

is why a connection layer appears between a counter-core and co-pedestal, in contrast to

the cancellation experiments, where core counter-NBI plus co-pedestal intrinsic torques

combine to produce a flat rotation profile. Related to this, the extent of the central

region with ∆vϕ < 0 (i.e. the location of the so called pivot radius - analogous to

the pivot point in inversions) and the magnitude of ∆vϕ are relevant issues for the

co-NBI+ECH cases.

Regarding the issue of the microscopic foundations of the putative ECH-induced

counter intrinsic torque, the observed correlations of 1/Lvϕ with 1/LTe and/or 1/Ln[38]
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and the steepening of ∇Te and ∇n in the core have motivated the hypothesis that the

ECH induces a flip in core turbulence from ITG to TEM, with a resulting change in

intrinsic torque from co to counter[34, 36, 38]. Note that ITG modes (v∗i direction)

tend to drive co-direction torque (with intensity gradient symmetry breaking), while

trapped electron modes (v∗e direction) tend to drive counter-direction torque[88]. Also

note that the structure and evolution of the density profile are critical here, since peaked

∇n profiles favor TEM. Collisionality is also very important[28]. In NBI+ECH, some

on-axis peaking of ∇n is observed, which will hasten the flip from ITG to TEM. Clearly,

momentum and particle transport are strongly coupled in this instance[87]. We add the

cautionary comment that more work on the global dynamics of the reversal mechanism

would be helpful to understand that phenomenon. In pure ECH drive, n(r) is relatively

flat, so the path to the development of TEM is not so clear. Of course, at higher

density, collisional coupling of the species may heat the ions and thus maintain the

primacy of ITG. Reconciling the fact that core intrinsic torque is clearly counter in

both ECH + co-NBI and pure ECH with the fact that ∇n peaks in the NBI cases but

is flat for the pure ECH cases is a challenge for theory. Amazingly, though, despite

the wealth of macroscopic profile data and trends, very little in the way of simple

linear microstability analysis using experimental profiles has been undertaken, and no

relevant fluctuation measurements are available. A recent study of KSTAR profiles from

ECH+NBI discharges[36] indicates that a mode population change may occur, but is

rather localized to the deep core. Results are extremely sensitive to ∇n evolution.

Further study is required, and consideration should be given to heat avalanching, and

turbulence propagation, both of which might ‘spread’ the domain of TEM excitation,

once it is established. A cartoon of this process is shown in Fig.25. Of course, mixed

states, as sketched in Fig.26, are likely to be encountered. Another issue - virtually un-
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mentioned except in very recent work[36] - is the mechanism of symmetry breaking in the

core of ECH+NBI plasmas. Results indicate that VE×B actually decreases when ECH

is applied, in contrast to what happens in transport barriers. The strong steepening

of ∇Te suggests that the TEM intensity gradient is a prime candidate mechanism. For

I ′/I ∼ 1/LTe > 0, results predict co-torque for ITG and counter-torque to TEM, with

the strength of the TEM-induced counter torque τTEM ∼ 1/LTe . Note that 1/LTe

is actually an underestimate of I ′/I for TEM. Further work on this issue is needed

and ongoing. Clearly the full picture for the I ′ scenario must involve consideration of

turbulence spreading, as depicted in Figs.25 and 26.

5.6. LSN ↔ USN Asymmetry

This is an important topic, which has received rather little attention, from either

theory or experiment. Apart from the pioneering work of LaBombard[39], experimental

studies have focused on edge profile measurements, but have not addressed dynamics.

Theoretical work has confronted the question of magnetic shear + electric shear induced

boundary stresses[41], but has not confronted the alternative scenario of how SOL flows

might penetrate the core or influence core rotation. It is interesting, though, that results

from DIII-D and Tore Supra agree with the model of Fedorczak, et al.[41], as mentioned

in section 4. This hints that the scenario of LaBombard, et al.[39] may not be universal,

or that it is coupled to eddy tilting processes[41]. Considerations concerning SOL flow

effects are limited to discussions of the parallel shear flow instability. In particular, the

interaction of shear SOL flows with boundary stresses seems likely to introduce a new

element in the eddy tilt-induced shear stress discussed in [41]. This will surely impact

the edge stresses which control intrinsic toroidal flows. Of course, perpendicular stresses

can drive intrinsic toroidal rotation, via the mechanism discussed in section 4.4. Clearly,
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Figure 25. A cartoon of the spatial spreading of TEM turbulence into ITG turbulence.

The direction of TEM turbulence spreading is the same as that of the heat flux from

the core to the edge.

Figure 26. A cartoon of the advance of TEM turbulence into ITG turbulence

mediated by a mixed state buffer zone where the two modes co-exist. Here the advance

is left-to-right, which corresponds to core-to-edge. The region of the mixed state

corresponds loosely to the neighborhood of the pivot point.

there is much room for future work in theory, experiment, and simulation.

6. Discussion and Conclusion

6.1. Assessment

In this section, we present the conclusions of this OV of intrinsic torque. The conclusions

are presented and discussed in the form of an assessment - i.e. outcomes are grouped

according to: i.) What we understand well, ii.) What we think we understand, but
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could benefit from improvement in our comprehension, iii.) What we don’t understand.

i.) What we understand well:

(i) Residual stress and intrinsic torque are driven by parallel and (via projections)

perpendicular Reynolds stresses. Momentum convection together with a finite flow

at the boundary can also drive intrinsic rotation.

(ii) The heat engine paradigm of intrinsic rotation provides a unifying framework within

which to develop the theory in terms of fluctuation entropy evolution.

(iii) The residual stress is driven by the thermodynamic forces ∇T , ∇p, ∇n, and

produces a local intrinsic torque −∂rΠR
r,ϕ. Residual stress can spin up the plasma

from rest, acting in concert with boundary conditions.

(iv) Residual parallel Reynolds stress requires symmetry breaking, so as to convert radial

inhomogeneity into parallel spectral asymmetry. Symmetry breaking mechanisms

include electric field shear ⟨vE⟩′ and intensity gradient I ′ - both of which are self-

reinforcing and linked to the driving heat flux. Additional symmetry breaking sets

the polarization stress (⟨krk∥⟩ ̸= 0→ essentially a quadrupole spatial moment of the

spectrum is required) and the poloidal Reynolds stress, which drives flow through

⟨Jr⟩Bθ/c (again, ⟨vE⟩′ and intensity gradient are the key elements).

(v) For ITG turbulence, Πres increases with R/LT −R/LT c, or more generally ∇Ti.

(vi) Residual stress is also robust in TEM. TEM-driven residual stress scales with ∇Te

and ∇n. The direction of intrinsic torque produced by TEM turbulence can differ

from that produced by ITG turbulence.

(vii) Net intrinsic rotation (i.e. an increase in radially integrated momentum) with a peak

thermal Mach number MT ≡ ⟨v∥⟩/vthi of 0.05 < MT < 0.15 can be produced in

flux driven ITG simulations with no slip boundary conditions. Multiple symmetry
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breaking mechanisms can, and do, operate simultaneously. Avalanches in heat and

momentum are observed, and introduce non-locality to momentum transport.

(viii) Strong intrinsic rotation can be generated by flux driven ITG turbulence in reverse

shear ITBs with off-axis minimum q(r), with no-slip boundary conditions.

ii.) What we think we understand but would benefit from more work on:

(i) The importance of the mechanisms for generation of toroidal rotation by fluctuation

driven radial currents - i.e. via the toroidal projection of the perpendicular Reynolds

stress - needs to be assessed more accurately. Similarly, the polarization stress

merits deeper thought.

(ii) The basic structure of the Rice scaling (∆vϕ ∼ ∆Wp/Ip) originates from: a.) strong

localized temperature gradients, as in the pedestal and ITBs (i.e. the local origin

of ∆Wp) and b.) q(r) scaling (i.e. the origin of Ip). It is not yet entirely clear

how we relate the problem of pedestal intrinsic torque to that of the scalings of the

H-mode pedestal width.

(iii) Relative hysteresis of ∇vϕ and ∇Ti in ITG intrinsic rotation, and its relation to

neoclassical Prandtl number Prneo. These have been observed in experiments[10]

and in simulations[79] of ITG turbulence with ITBs. Relative hysteresis is likely

present in the H-mode pedestal.

(iv) The precise relation between turbulence propagation direction (i.e. v∗e vs. v∗i)

and toroidal rotation direction has not yet been established. More generally, our

understanding of OH reversals and other momentum transport bifurcations not

related to confinement bifurcations is still developing.

(v) Non-locality in momentum transport and intrinsic torque is not understood.

Seminal ideas have been proposed but not critically analyzed. Fundamental
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theoretical work at the level of phase space entropy dynamics is required.

(vi) How pinch and intrinsic torque might interact to form global profile structure needs

further study.

(vii) The question of how intrinsic rotation in H-mode and in ITBs ultimately saturates

needs further consideration.

iii.) What we do not yet really understand:

(i) The interplay of turbulence and wave scattering with possible neoclassical effects

and orbit loss in determining the boundary condition for intrinsic torque is not

understood, at all.

(ii) Our understanding of the detailed interplay between core and pedestal intrinsic

torques and the edge boundary physics, and their roles in determining global profiles

is in its infancy. This is a critical issue.

(iii) The connections between edge eddy tilting, edge stresses, SOL flows and core

rotation are unclear. Several scenarios have been proposed, but not analyzed.

(iv) The apparent absence of ρ∗ scaling of intrinsic rotation signals a major gap in our

understanding.

(v) The effect of energetic particles on intrinsic rotation and torque are unknown.

(vi) Models for the detailed spatio-temporal dynamics of intrinsic rotation profile build-

up, degree of non-locality, etc are not available.

(vii) The critical torque-to-power ratio that likely delimits pinch vs. residual stress

dominated momentum transport regimes is unknown.

(viii) The physics of H-mode rotation profiles with competing and interacting NBI torque

and ECH driven intrinsic torque is unclear. Pure ECH H-mode rotation profiles
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are also not understood. Two particular enigmas of the latter are the apparent

sensitivity to deposition location and the structure and location of the core-pedestal

connection layer. Resolution of these questions requires an understanding of mixed

states and the role of turbulence spreading.

(ix) Intrinsic torque and rotation in LHCD and ICRF driven discharges are poorly

understood. Of particular note is the apparent change in the sign of the residual

stress as LH power is increased[89].

6.2. Programmatic Suggestions

Since the principal purpose of the IAEA FEC is to identify topics of programmatic focus,

the paper concludes with a section of highly simplified programmatic suggestions. These

are:

(i) Contrary to the conventional wisdom, the problem of intrinsic rotation is not

‘solved’. Research must continue. Certain aspects of the ECH-driven rotation

problem seem especially critical (and dangerous) for ITER. The vϕ(r) = 0 null

point which appears in ECH H-mode with counter-core and co-pedestal profiles is

potentially deadly and merits much more attention.

(ii) Fluctuation studies must be undertaken in concert with macroscopic profile

experiments. Direct measurements of Reynolds stress by HIBP and other means

should be pursued.

(iii) OH reversals and co-NBI H-mode + ECH have many elements in common and

should be pursued as part of a comparative study, including studies of fluctuation

populations, particle transport, and momentum transport.

(iv) Comparative studies of related phenomena with different boundary conditions (i.e.
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limited L-mode, diverted L-mode, H-mode) would be extremely interesting and

useful. OH reversals and the ECH-related phenomena are particularly strong

candidates for this sort of study.

(v) Modelling and theory studies must address the question of global profile structure,

not only local stresses and gradients. In particular, the incidence of global structural

bifurcations should be investigated.

(vi) Much greater attention should be given to dynamic (i.e. perturbative) studies of

intrinsic torque, and to investigations of related non-locality phenomena.

(vii) The effect of boundary stresses and SOL flows on core rotation is poorly understood

and requires much more work.

Clearly, the physics of intrinsic torque still offers many fascinating challenges.
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